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1. Introduction

In 1909, H. Weyl (Über beschränkte quadatische Formen, deren

Differenz Vollstetig ist) examined the spectra of all compact

perturbations of a self adjoint operator on a Hilbert space and

found that their intersection consisted precisely of those points of

the spectrum which were not isolated eigenvalues of finite

multiplicity. A bounded linear operator satisfying this property is

said to satisfy Weyl‘s Theorem.
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Introduction

Further, in 2002, M. Berkani (Index of B-Fredholm operators and

generalization of a Weyl’s theorem) proved that if T is a bounded

normal operator acting on a Hilbert space H then σBW (T) = σ(T)

\ E(T), where E(T) is the set of all isolated eigenvalues of T,

which gives the generalization of the Weyl’s Theorem. He also

proved this generalized version of classical Weyl’s Theorem for

bounded hyponormal operators (Generalized Weyl’s theorem and

hyponormal operators, 2004).
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Following Weyl and Berkani, various variants of Weyl’s Theorem,

generally known as the Weyl-type theorems, have been introduced

with much attention to an approximate point version called

a-Weyl‘s theorem.

Study of other generalizations began in 2003 that resulted in

various Weyl type theorems, viz., Browder‘s theorem, a-Browder‘s

theorem, generalized Weyl‘s theorem, generalized a-Weyl‘s

theorem, generalized Browder‘s theorem and generalized

a-Browder‘s theorem.

This study, however, was limited to the classes of bounded

operators.
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2. Classes of Linear operators

Bounded Linear operators

Let H be a complex Hilbert space and T : D(T) −→ H, a linear

transformation from a linear subspace D(T) of H into H. The

operator T is said to be bounded if there is a real number c such

that for all x ∈ D(T), ‖Tx‖ 6 c‖x‖.
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Classes of Linear operators

Bounded Normal operators

A Normal operator on a complex Hilbert Space H is a continuos

linear operators N : H → H that commutes with its adjoint

operators N∗, that is, NN∗ = N∗N.

Several attempts have been made to generalize the classes of

normal operators by weakening the commutativity requirement.
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Classes of Linear operators

Non-Normal classes of operators

Quasi-normal operators: N(N∗N) = (N∗N)N.

Hyponormal operators: N∗N > NN∗ or

equivalently,‖Nx‖ > ‖N∗x‖ for every unit vector x ∈ H.

Paranormal operators: ‖N2x‖ > ‖Nx‖2 for every unit vector

x ∈ H.

*-Paranormal operators: ‖N2x‖.‖x‖ > ‖N∗x‖2 for every

x ∈ H.
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Classes of Linear operators

It is well known that the following containments hold:

Normal ⊂ Quasi-normal ⊂ Hyponormal ⊂ Paranormal ⊂

*-Paranormal
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Classes of Linear operators

Unbounded linear operators

Let H be a complex Hilbert space. An operator T : D(T) −→ H is

said to be unbounded if for every c there exists an x in D(T) such

that ‖Tx‖ > c‖x‖.

Densely defined operators

An operator T is said to be densely defined if its domain is dense

in H.

The denseness of the domain is necessary and sufficient for the

existence of the adjoint and the transpose.
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Classes of Linear operators

Most applications use unbounded linear operators which are closed

or atleast have closed linear extensions.

Closed linear operators

An operator T : D(T) −→ H is said to be a closed linear

operator if xn −→ x (xn ∈ D(T)) and Txn −→ y together imply

that x ∈ D(T) and Tx = y . We denote the class of all closed

linear operators by C (H).

Note: If an operator T is closed, densely defined and continuous

on its domain, then it is defined on all of H.
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3. Spectral theory

If T is a bounded linear operator, it is well known that the

spectrum of T, σ(T) is the set of all those λ ∈ C for which T - λI

is not bijective. This concept can be extended to the case when T

is a densely defined unbounded linear operator.

Spectrum of an unbounded linear operator

Let T be a densely defined unbounded linear operator. A complex

number λ is said to be in the spectrum of T if T - λI does not

have a bounded inverse.
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Spectral theory

Remark

The spectrum of an unbounded operator is in general a closed

(possibly empty) subset of the complex plane unlike the case of

bounded operators where the spectrum is a non-empty, closed and

bounded subset of C.

Remark

Boundedness of the inverse operator follows directly from its

existence in case if T is a closed linear operator. This follows from

the closed graph theorem. Therefore, as in the case of bounded

operators, spectrum of a closed linear operator is also the set of

those λ for which T - λI is not bijective.
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Spectral theory

The ascent and Descent of an operator

The ascent p(T) and descent q(T) of an operator T ∈ C (H) are

given by

p(T) = inf {n : N (Tn) = N (Tn+1)} and

q(T) = inf {n : R(Tn) = R(Tn+1)}.
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Spectral theory

It is well known that the resolvent operator Rλ(T) = (T - λI)−1 is

an analytic function for all λ ∈ ρ(T) and the isolated points of

σ(T) are either poles or essential singularities of Rλ(T).

Pole of the resolvent operator

For T ∈ C (H) an isolated point λ ∈ σ(T) is said to be a pole of

order p if p = p(T - λI) <∞ and q(T - λI) <∞.

Left-Pole of the resolvent operator

A point λ ∈ σa(T) is said to be a left-pole if p = p(T - λI) <∞

and R(T - λI)p+1 is closed.
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Spectral theory

If π(T ) & πa(T ) denote the set of all poles and left-poles of T,

respectively, and πo(T ) & πao(T ) denote the set of all poles and

left-poles of finite multiplicity, respectively, then clearly:

π(T ) ⊆ πa(T ) and πo(T ) ⊆ πao(T ).
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Spectral theory

We have the following necessary and sufficient condition due to

Lay (Spectral Analysis Using Ascent, Descent, Nullity and Defect,

1970):

Let T be a closed linear operator with ρ(T) 6= ∅. If λo ∈ σ(T) and

there exists two closed subspaces M and N such that T - λo I is

one-one mapping of D(T) ∩ M onto M, T - λo I|N is nilpotent of

index p and H = M ⊕ N, then M = R(T - λo I)p, N = N (T -

λo I)p and λo is a pole of the resolvent Rλ(T) of order p. The

above condition is also necessary.
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4. Weyl theory

Semi-Fredholm operators

Let T ∈ C (H) and let R(T) and N (T) denote the range and null

space of T, respectively. If R(T) is closed and nullity of T, α(T) =

dim N (T) <∞ (resp., defect of T, β(T) = codim R(T) <∞)

then T is called an upper semi-Fredholm (resp. lower

semi-Fredholm) operator. A semi-Fredholm operator is an

upper or lower semi-Fredholm operator.
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Weyl theory

By SF+(H) (resp. SF−(H)) we denote the class of upper (resp.

lower) semi-Fredholm operators. For T ∈ SF+(H) ∪ SF−(H),

index of T is defined as ind(T) = α(T) - β(T).

We have,

SF−+ (H) = {T ∈ C (H) : T ∈ SF+(H) and ind(T) 6 0 }, and

SF+
− (H) = {T ∈ C (H) : T ∈ SF−(H) and ind(T) > 0 }

and these operators generate the following spectrum

σSF−
+

(T) = {λ ∈ C : T - λI /∈ SF−+ (H) } and

σSF+
−

(T) = {λ ∈ C : T - λI /∈ SF+
− (H) }
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Weyl theory

Fredholm operators

If both α(T) and β(T) are finite then T is called a Fredholm

operator. An operator T ∈ C (H) is called Weyl if it is Fredholm

of index 0 and the Weyl spectrum of T is defined as σW (T) =

{λ ∈ C : T - λI is not Weyl}.
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Weyl theory

The concept of Fredholm operators was generalized by Berkani to

the class of unbounded B-Fredholm operators (Unbounded

B-Fredholm operators on Hilbert spaces, 2008).

Let T ∈ C (H) and let ∆(T) = {n ∈ N: ∀m ∈ N, m > n⇒ R(Tn)

∩ N (T) ⊆ R(Tm) ∩ N (T)}. Then the degree of stable

iteration of T is defined as dis(T) = inf ∆(T) where dis(T) = ∞

if ∆(T) = ∅.
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Weyl theory

Semi B-Fredholm operators

Let T ∈ C (H) be densely defined on H. We say that T ∈ C (H) is

semi B-Fredholm operator if it is either upper or lower semi

B-Fredholm operator, where T is an upper (resp. lower) semi

B-Fredholm operator if there exists an integer d ∈ ∆(T) such that

R(Td) is closed and dim {N (T) ∩ R(Td)} <∞ (resp. codim

{R(T) + N (Td)} <∞).



Weyl-Type Theorems for Unbounded Operators

Weyl theory

In either case, index of T is defined as the number

ind(T) = dim {N (T) ∩R(Td)} − codim {R(T) +N (Td)}.

Let SBF+(H) denote the class of all upper semi B-Fredholm

operators. Then SBF−+ (H) = {T ∈ C (H) : T ∈ SBF+(H) and

ind(T) 6 0} and σSBF−
+

(H) = {λ ∈ C : T - λI /∈ SBF−+ (H)}.
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Weyl theory

B-Fredholm operators:

We say that T is B-Fredholm operator if T is both upper and

lower semi B-Fredholm operator, that is, there exists an integer

d ∈ ∆(T) such that T satisfies the following conditions:

(i) dim {N (T) ∩ R(Td)} <∞

(ii) codim {R(T) + N (Td)} <∞
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Weyl theory

B-Weyl spectrum

An operator T ∈ C (H) is said to be B-Weyl if it is a B-Fredholm

operator of index zero and the B-Weyl spectrum of T is defined

as σBW (T) = {λ ∈ C : T - λI is not B-Weyl}.
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Weyl theory

Browder operators

An operator T ∈ C (H) is said to be upper semi-Browder (resp.

lower semi-Browder) if T is upper semi-Fredholm with p(T) <∞

(resp. lower semi-Fredholm with q(T) <∞). If T is both upper

and lower semi-Browder, that is, if T is a Fredholm operator with

ascent and descent both finite, then T is Browder.
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Weyl theory

Browder spectrum:

The upper-Browder, lower-Browder and Browder spectra are

defined as

σub(T) = {λ ∈ C : T - λI not upper semi-Browder},

σlb(T) = {λ ∈ C : T - λI not lower semi-Browder} and

σb(T) = {λ ∈ C : T - λI not Browder}, respectively.

Clearly, σSF−
+

(T) ⊆ σub(T) and σw (T) ⊆ σb(T).
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Weyl theory

One of the interesting properties in Fredholm theory is the single

valued extension property (SVEP). This property was first

introduced by Dunford (1952). Mainly we concern with the

localized version of SVEP, the SVEP at a point, introduced by

Finch (1975) and relate it to the finiteness of the ascent of an

operator.
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Weyl theory

The Single valued extension property

Let T : D(T) ⊂ H → H be a closed linear mapping and let λo be a

complex number. The operator T has the single valued extension

property (SVEP) at λo if f = 0 is the only solution to

(T- λI)f (λ) = 0 that is analytic in a neighborhood of λo . Also, T

has SVEP if it has this property at every point λo in the complex

plane.
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Weyl theory

We have the following relation between the SVEP at a point and

the ascent of an operator:

Let T ∈ C (H).

(i) If p(T - λI) is finite for some λ ∈ C, then T has SVEP at λ.

(ii) If T is onto and not one-one, then T does not have SVEP at

λ = 0.

The second condition can also be rephrased as “If T has SVEP,

then T is invertible whenever it is onto, that is, σ(T) = σs(T)”.
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5. Weyl Type Theorems for Unbounded Operators

By isoσ(T) and isoσa(T) we denote the isolated points of σ(T)

and σa(T), respectively. We use the following notations:

E (T ) : the set of all eigenvalues in isoσ(T ),

Eo(T ) : the set of all eigenvalues of finite multiplicities in isoσ(T ),

E a(T ) : the set of all eigenvalues in isoσa(T ),

E a
o (T ) : the set of all eigenvalues of finite multiplicities in isoσa(T ).

Following are some of the variants of Weyl’s Theorem.
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Weyl Type Theorems for Unbounded Operators

Weyl-type theorems

We say that T ∈ C (H) satisfies:

(i) Weyl’s Theorem if σ(T ) \ σw (T ) = Eo(T ).

(ii) Generalized Weyl’s Theorem if σ(T ) \ σBW (T ) = E (T ).

(iii) a-Weyl’s Theorem if σa(T ) \ σSF−
+

(T ) = E a
o (T ).

(iv) Generalized a-Weyl’s Theorem if σa(T ) \ σSBF−
+

(T ) = E a(T ).

(v) Browder’s Theorem if σ(T ) \ σw (T ) = πo(T ).

(vi) Generalized Browder’s Theorem if σ(T ) \ σBW (T ) = π(T ).

(vii) a-Browder’s Theorem if σa(T ) \ σSF−
+

(T ) = πao(T ).

(viii) Generalized a-Browder’s Theorem

σa(T ) \ σSBF−
+

(T ) = πa(T ).
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Weyl Type Theorems for Unbounded Operators

Weyl-type theorems

(ix) property (w) if σa(T ) \ σSF−
+

(T ) = Eo(T ).

(x) property (gw) if σa(T ) \ σSBF−
+

(T ) = E (T ).

(xi) property (aw) if σ(T ) \ σw (T ) = E a
o (T ).

(xii) property (gaw) if σ(T ) \ σBW (T ) = E a(T ).

(xiii) property (b) if σa(T ) \ σSF−
+

(T ) = πo(T ).

(xiv) property (gb) if σa(T ) \ σSBF−
+

(T ) = π(T ).

(xv) property (ab) if σ(T ) \ σw (T ) = πao(T ).

(xvi) property (gab) if σ(T ) \ σBW (T ) = πa(T ).
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Weyl Type Theorems for Unbounded Operators

5.1 Weyl Type Theorems for Unbounded Normal Operators

Theorem:

If T is a closed normal operator, then:

(i) ‖Tx‖ = ‖T ∗x‖, ∀ x ∈ D(T ) = D(T ∗)

(ii) H = R(T )⊕N (T )

(iii) p(T ) = 0 or 1.
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Weyl Type Theorems for Unbounded Operators

Remark:

If T is normal then so are T ∗ (the adjoint of T ), T − λI and

T ∗ − λI for all λ ∈ C. Therefore, whenever T is a closed normal

operator, (i) (ii) and (iii) of the above theorem hold with T

replaced by T ∗, T − λI and T ∗ − λI for all λ ∈ C.

Result:

Let T be a closed normal operator with D(T ) ⊂ H. Then

σ(T ) = σa(T )
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Weyl Type Theorems for Unbounded Operators

let %(H) = {T ∈ C (H) : T is a densely defined unbounded normal

operator with ρ(T ) 6= φ}

Theorem:

If T ∈ %(H), then λ is an isolated point of σ(T ) iff λ is a simple

pole of the resolvent of T .

Corollary:

If T ∈ %(H), then π(T ) = E (T ) = E a(T ) and in particular,

πo(T ) = Eo(T ) = E a
o (T ).
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Weyl Type Theorems for Unbounded Operators

Theorem:

Let T ∈ %(H). Then the following are equivalent:

(i) a-Weyl’s Theorem

(ii) Weyl’s Theorem

(iii) Browder’s Theorem

(iv) a-Browder’s Theorem
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Weyl Type Theorems for Unbounded Operators

Theorem:

Let T ∈ %(H). Then the following are equivalent:

(i) Generalized a-Weyl’s Theorem

(ii) Generalized Weyl’s Theorem

(iii) Generalized Browder’s Theorem

(iv) Generalized a-Browder’s Theorem
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Weyl Type Theorems for Unbounded Operators

Theorem:

Let T ∈ %(H). Then the following are equivalent:

(i) property (aw)

(ii) property (w)

(iii) property (b)

(iv) property (ab)
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Weyl Type Theorems for Unbounded Operators

Theorem:

Let T ∈ %(H). Then the following are equivalent:

(i) property (gaw)

(ii) property (gw)

(iii) property (gb)

(iv) property (gab)
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Weyl Type Theorems for Unbounded Operators

Example

Let H = l2 and let T be defined as follows:

T (x1, x2, x3, . . . ) = (ix1, 2x2, x3, 4x4, x5, . . . ) (i =
√
−1)

= (a1x1, a2x2, a3x3, a4x4, a5x5, . . . ), say ,

where, aj =


i , j = 1;

j , if j = 2n, n ∈ N;

1, if j = 2n + 1, n ∈ N.

and D(T ) =

{
(x1, x2, x3, . . . ) ∈ l2 :

∞∑
j=1

|ajxj |2 <∞
}
.
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Weyl Type Theorems for Unbounded Operators

Then T is a closed, densely defined, unbounded normal operator

with σ(T ) = σa(T ) = σp(T ) = {aj : j ∈ N} = {i , 1, 2, 4, 6, . . . }.

Also,

Eo(T ) = {i , 2, 4, 6, . . . } = E a
o (T ) = πo(T ) = πao(T ),

E (T ) = {i , 1, 2, 4, 6, . . . } = E a(T ) = π(T ) = πa(T ),

σw (T ) = {1} = σSF−
+

(T ),

σBW (T ) = φ = σSBF−
+

(T ).
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Weyl Type Theorems for Unbounded Operators

5.2 Weyl Type Theorems for Unbounded Hyponormal

Operators

Lemma:

Let T ∈ C (H) be an unbounded hyponormal operator. Then:

(i) the ascent p(T - λI) = 0 or 1, for every λ ∈ C

(ii) λ is an isolated point of σ(T ) iff λ is a pole of the resolvent

of T.

NOTE: (ii) can also be rephrased as “ Every unbounded

Hyponormal operator is a polaroid operator.”
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Weyl Type Theorems for Unbounded Operators

Theorem:

Let T be an unbounded Hyponormal operator. Then:

(i) T satisfies Weyl’s Theorem

(ii) T satisfies Browder’s Theorem

(iii) T satisfies generalized Weyl’s Theorem

(iv) T and T∗ satisfy a-Browder’s Theorem.
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Weyl Type Theorems for Unbounded Operators

Example

Let H = l2 and let T be defined as:

T (x1, x2, x3, . . . ) = (0, x1, 2x2, 3x3, 4x4, . . . )

= (0, a1x1, a2x2, a3x3, a4x4, . . . )

where, an = n for all n ∈ N and

D(T) =

{
(x1, x2, x3, . . . ) ∈ l2 :

∞∑
j=1

|ajxj |2 <∞
}
.

Then T is an unbounded hyponormal operator.
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Weyl Type Theorems for Unbounded Operators

We have, σp(T) = φ. Therefore, E(T) = Eo(T) = φ. Also, σ(T)

= C ∪ {∞}, σa(T) = {∞}.

σw (T) = C ∪ {∞} = σb(T) and hence T satisfies Browder’s

Theorem,

σSF−
+

(T) = {∞} = σub(T) and hence T satisfies a-Browder’s

Theorem,

σ(T) \σw (T) = φ = Eo(T) and hence T satisfies Weyl’s Theorem,

and

σ(T) \σBW (T) = φ = E(T) and hence T satisfies generalized

Weyl’s Theorem.
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Weyl Type Theorems for Unbounded Operators

Let <(H) = {T ∈ C (H): T is an unbounded hyponormal operator

with the resolvent set ρ(T) 6= ∅}.

It is known that property (gw) implies property (gb) and property

(w) implies property (b) for every T ∈ B(H), but the converse of

these results do not hold true in general (Berkani & Zariouh, 2009).

However, we have proved the following equivalence:

Theorem:

Let T ∈ <(H). Then property (b) holds for T iff property (w)

holds for T.
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Weyl Type Theorems for Unbounded Operators

Also, it is shown that for every T ∈ <(H), E(T) = π(T) and in

particular, Eo(T) = πo(T). This helped establish the following

equivalences:

Theorem

Let T ∈ <(H). Then:

(i) generalized Weyl’s Theorem is equivalent to generalized

Browder’s Theorem

(ii) Weyl’s Theorem is equivalent to Browder’s Theorem

(iii) property (gw) is equivalent to property (gb).

Remark: If T ∈ <(H), then T satisfies generalized Browder’s

Theorem.
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6. Summary

To summarize, we use the abbreviations gaW, aW, gW, W, and

(gaw), (aw), (gw), (w) to signify that an operator T ∈ %(H)

satisfies generalized a-Weyl’s Theorem, a-Weyl’s Theorem,

generalized Weyl’s Theorem, Weyl’s Theorem, respectively and

properties (gaw), (aw), (gw), (w) respectively. Similarly

abbreviations gaB, aB, gB, B, and (gab), (gb), (gb), (b) have

analogous meaning with respect to Browder-type theorems and

properties.
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Summary

The following diagram shows the relations between several

Weyl-type theorems, Browder-type theorems and properties for a

bounded linear operator T. The arrows signify implications

between the theorems and properties.

aW //W aB //

��

B

��
gaW

OO

// gW

OO

gaB

OO

// gB

OO

(gw)

OO

��

// (gb)

OO

��

// (gab)

OO

��

(gaw)oo

��
(w) // (b)

��

// (ab)

��

(aw)oo

aW // aB // B Woo
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Summary

The following diagram shows the relations that hold between

various variants of Weyl’s Theorem when T ∈ %(H).

aW ks +3W ks +3 aB ks +3

��

B

��
gaW

OO

ks +3 gW

OO

ks +3 gaB

OO

ks +3 gB

OO

(gw)

OO

��

ks +3 (gb)

OO

��

ks +3 (gab)

OO

��

ks +3 (gaw)

��
(w) ks +3 (b) ks +3 (ab) ks +3 (aw)
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Summary

In this diagram, we consider T ∈ <(H) and we notice that several

one sided implications now become equivalences.

gW (gw)oo ks +3

��

(gb) //

��

gB ks +3

��

gW

(w) ks +3

��

(b) // B ks +3W

W aB

OO
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